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Let ∑ be the class of finite graphs. A topological index is a function Top from ∑ into real numbers with this property that 
Top(G) = Top(H), if G and H are isomorphic. Obviously, the number of vertices and the number of edges are topological 
index. In this paper we compute two classes of GA indices of nanostructures.  
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1. Introduction 
 
Throughout this paper graph means simple connected 

graph. Let G be a connected graph with vertex and edge 
sets V(G) and E(G), respectively. Suppose Graph denotes 
the class of all graphs. A map Top from Graphs into real 
numbers is called a topological index, if G H implies 
that Top(G) = Top(H). Obviously, the maps Top1 and Top2 
defined as the number of edges and vertices, respectively, 
are topological indices. The Wiener [6] index is the first 
reported distance based topological index and is defined as 
half sum of the distances between all the pairs of vertices 
in a molecular graph. If , ( )x y V G∈  then the distance 

( , )Gd x y between x and y is defined as the length of any 
shortest path in G connecting x and y. The eccentricity of 
vertex u is ε (u) = Max{d(x,u) | x ∈ V(G)}. The maximum 
eccentricity over all vertices of G is called the diameter of 
G and denoted by D(G) and the minimum eccentricity 
among the vertices of G is called radius of G and denoted 
by R(G). Diudea [1-3] was the first scientist considered the 
problem of computing topological indices. 

A class of geometric–arithmetic topological indices 

may be defined as 
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, where 

Qu is some quantity that in a unique manner can be 
associated with the vertex u of the graph G4. The first 
member of this class was considered by Vukicevic and 
Furtula [5], by setting Qu to be the 
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in which, degree of vertex u denoted by du. The second 
member of this class was considered by Fath-Tabar et al. 
[6] by setting Qu to be the number nu of vertices of G lying 
closer to the vertex u than to the vertex v for the edge uv of 
the graph G: 
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The third member of this class was considered by Bo 

Zhou et al. [7] by setting Qu to be the number mu of edges 
of G lying closer to the vertex u than to the vertex v for the 
edge uv of the graph G: 
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The fourth member of this class was considered by M. 
Ghorbani et al.8 by setting Qu to be the number ε(u) the 
eccentricity of vertex u: 
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The Zagreb indices have been introduced more than 
thirty years ago by Gutman and Trinajestic [9]. They are 
defined as: 

( )2
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Now we define a new version of Zagreb indices as 
follows [10]: 
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= ∑ ε ε . 

 
2. Results and discussion 
 
In mathematics, groups are often used to describe 

symmetries of objects. This is formalized by the notion of 
a group action: every element of the group "acts" like a 
bijective map (or "symmetry") on some set. To clarify this 
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notion, we assume that G is a group and X is a set. G is 
said to act on X when there is a map φ : G  X ⎯→ X 
such that all elements x ∈ X, (i) φ(e,x) = x where e is the 
identity element of G, and, (ii) φ(g, φ(h,x)) = φ(gh,x) for all 
g,h ∈ G. In this case, G is called a transformation group, X 
is called a G-set, and φ is called the group action. For 
simplicity we define gx = φ(g,x). In a group action, a group 
permutes the elements of X. The identity does nothing, 
while a composition of actions corresponds to the action of 
the composition. For a given X, the set {gx | g ∈ G}, where 
the group action moves x, is called the group orbit of x. 
The subgroup which fixes is the isotropy group of x. 

An automorphism of the graph G = (V, E) is a 
bijection σ  on V which preserves the edge set e, i. e., if             
e = uv is an edge, then σ( ) σ( )σ( )e u v=  is an edge of E. 
Here the image of vertex u is denoted by σ( )u . The set of 
all automorphisms of G under the composition of 
mappings forms a group which is denoted by Aut(G). 
Aut(G) acts transitively on V if for any vertices u and v in 
V there is α ( )Aut G∈  such that α( )u v= . Similarly  
G = (V, E) is called edge-transitive graph if for any two 
edges e1 = uv and e2 = xy in E there is an element 
β ( )Aut G∈  such that 1 2β( )e e=  where, 

)()()( 1 vue ββ=β .  
 
Example 1. Let Sn be the star graph with n + 1 

vertices. It is easy to see that Sn is edge- transitive. So we 
have:  

4
2( ) 2
3nGA S n= × . 

Fullerenes [12,13] are molecules in the form of 
polyhedral closed cages made up entirely of n three 
coordinate carbon atoms and having 12 pentagonal and 
(n/2 - 10) hexagonal faces, where n is equal or greater than 
20. Hence, the smallest fullerene, C20, (n = 20) has 12 
pentagons and its point groups, is well known to be Ci. In 
the following example we compute the GA4 index of C20. 

 
Example 2. Consider the fullerene graph C20 shown 

in Fig. 1. It is easy to see C20 is edge transitive. 
Furthermore, because C20 is vertex transitive so by 
computing values of ε( )u  and ε( )v  we have, 
ε( ) ε( ) 5u v= = . In the other word |E| = 30 and 

4 20( ) 30.GA C =  
In the general we have the following theorem without 

proof: 
 
Theorem 3. Let G be a graph in which, Aut(G) acts 

both edge and vertex-transitively. Then 
4 ( ) | ( ) | .GA G E G=  

 
Fig. 1. The graph of fullerene C20. 

 
The fullerenes C20 and C60 are the only vertex 

transitive fullerene. So, it is important how to compute 
GA4 index for the case which G is not transitive graph. 
One can apply the following Lemma for this case: 

 
Lemma 4. Let G = (V, E) be a graph. If Aut(G) on V 

has orbits Ei, 1 ≤ i ≤ s, where ei=uivi is an edge of G. then: 
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Proof. The values of ε(u) and ε(v) for every ie E∈  
are equal. So, it is enough to compute ε(ui) and ε(vi) for ei 
= uivi (1 ≤ i ≤ s). 

A hypercube define as follows: 
The vertex set of the hypercube Hn consist of all n-

tuples b1b2…bn with {0,1}ib ∈ . Two vertices are 
adjacent if the corresponding tuples differ in precisely one 
place. Darafsheh [11] proved Hn is vertex and edge 
transitive. We use of this result and we have the following 
theorems without proof: 

 
Theorem 5. * 3 1

2 ( ) | | .2n
nM H E n −= =  and 

1
4 ( ) | | .2 .n

nGA H E n −= =  

 
 

Fig. 2. The Zig-zag Polyhex Nanotube. 
 
Apply our method on a toroidal fullerene R = R[p,q], 

in terms of its circumference (q) and its length (p), Fig. 1. 
To compute the eccentric connectivity index of this 
fullerene, we first prove its molecular graph is vertex 
transitive.  
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Fig. 3. A 2-Dimensional Lattice for T[p,q]. 
 

Lemma 6 — The molecular graph of a polyhex 
nanotorus is vertex transitive. 

Proof — To prove this lemma, we first notice that p 
and q must be even. Consider the vertices uij and urs of the 
molecular graph of a polyhex nanotori T = T[p,q], Fig. 2. 
Suppose both of i and r are odd or even and σ is a 
horizontal symmetry plane which maps uit to urt, 1 ≤ t ≤ p 
and π is a vertical symmetry which maps utj to uts, 1 ≤ t ≤ 
q. Then σ and π are automorphisms of T and we have 
πσ(uij) = π(urj) = urs. Thus uij and urs are in the same orbit 
under the action of Aut(G) on V(G). On the other hand, 
the map θ defined by θ(uij) = θ(u(p+1-i)j) is a graph 
automorphism of T and so if “i is odd and r is even” or “i 
is even and r is odd” then again uij and urs will be in the 
same orbit of Aut(G), proving the lemma. 

 
Therem 7. [ ] [ ]1 ( , ) 2| | ( , )M T p q E D T p q∗ =  and 

[ ] [ ]2
2 ( , ) | | ( , ).M T p q E D T p q∗ =  
Proof. By using Lemma 6 it is easy to see  
[ ] [ ]1 ( , ) ε( ) ε( ) 2| |ε( ) 2| | ( , )

e uv
M T p q u v E u E D T p q∗

=
= + = =∑

 and  

[ ] [ ]2 2
2 ( , ) ε( ) | |ε( ) 2| | ( , )

e uv
M T p q u E u E D T p q∗

=
= = =∑ . 

Corollary 8. [ ]
*
2

*
1

2( , ) MD T p q
M

= . 

Therem 9. [ ]2 ( , ) | |.GA T p q E=  
Proof. 

[ ]2
( ) ( )

2 deg( )deg( )
( , ) 1 | |.
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u v
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Therem 10. [ ]4 ( , ) | |.GA T p q E=  

Proof. Because Aut(T[p,q]) acts transitively on the set of 
vertices so, we have:  
 

[ ]4
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